Search results for "Fictitious domain method"
showing 8 items of 8 documents
Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions
2009
Fixed domain methods have well-known advantages in the solution of variable domain problems including inverse interface problems. This paper examines two new control approaches to optimal design problems governed by general elliptic boundary value problems with Dirichlet boundary conditions. Numerical experiments are also included peerReviewed
Shape optimization for monge-ampére equations via domain derivative
2011
In this note we prove that, if $\Omega$ is a smooth, strictly convex, open set in $R^n$ $(n \ge 2)$ with given measure, the $L^1$ norm of the convex solution to the Dirichlet problem $\det D^2 u=1$ in $\Omega$, $u=0$ on $\partial\Omega$, is minimum whenever $\Omega$ is an ellipsoid.
A Fixed Domain Approach in Shape Optimization Problems with Neumann Boundary Conditions
2008
Fixed domain methods have well-known advantages in the solution of variable domain problems, but are mainly applied in the case of Dirichlet boundary conditions. This paper examines a way to extend this class of methods to the more difficult case of Neumann boundary conditions.
Parallel fictitious domain method for a non‐linear elliptic neumann boundary value problem
1999
Parallelization of the algebraic fictitious domain method is considered for solving Neumann boundary value problems with variable coefficients. The resulting method is applied to the parallel solution of the subsonic full potential flow problem which is linearized by the Newton method. Good scalability of the method is demonstrated on a Cray T3E distributed memory parallel computer using MPI in communication. Copyright © 1999 John Wiley & Sons, Ltd.
Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms
1999
SUMMARY A multiobjective multidisciplinary design optimization (MDO) of two-dimensional airfoil is presented. In this paper, an approximation for the Pareto set of optimal solutions is obtained by using a genetic algorithm (GA). The first objective function is the drag coefficient. As a constraint it is required that the lift coefficient is above a given value. The CFD analysis solver is based on the finite volume discretization of the inviscid Euler equations. The second objective function is equivalent to the integral of the transverse magnetic radar cross section (RCS) over a given sector. The computational electromagnetics (CEM) wave field analysis requires the solution of a two-dimensi…
Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems
1998
Fictitious domain methods for the numerical solution of two-dimensional scattering problems are considered. The original exterior boundary value problem is approximated by truncating the unbounded domain and by imposing a nonreflecting boundary condition on the artificial boundary. First-order, second-order, and exact nonreflecting boundary conditions are tested on rectangular and circular boundaries. The finite element discretizations of the corresponding approximate boundary value problems are performed using locally fitted meshes, and the discrete equations are solved with fictitious domain methods. A special finite element method using nonmatching meshes is considered. This method uses …
A symmetric Galerkin boundary/domain element method for finite elastic deformations
2000
Abstract The Symmetric Galerkin Boundary Element Method (SGBEM) is reformulated for problems of finite elasticity with hyperelastic material and incompressibility, using fundamental solutions related to a (fictitious) homogeneous isotropic and compressible linear elastic material. The proposed formulation contains, besides the standard boundary integrals, domain integrals which account for the problem's nonlinearities through some (fictitious) initial strain and stress fields required to satisfy appropriate “consistency” equations. The boundary/domain integral equation problem so obtained is shown to admit a stationarity principle (a consequence of the Hu-Washizu one), which covers a number…
Fast Direct Solver for a Time-harmonic Electromagnetic Problem with an Application
2003
A fast direct solution of a periodic problem derived from the time-harmonic Maxwell’s equations is considered. The problem is discretized by low order hexahedral finite elements proposed by Nedelec. The solver is based on the application of FFT, and it has the computational cost O(N log N). An application to scattering of an electromagnetic wave by a periodic structure is presented.